Correlation between Protein Sequence Similarity and Crystallization Reagents in the Biological Macromolecule Crystallization Database

نویسندگان

  • Hui-Meng Lu
  • Da-Chuan Yin
  • Yong-Ming Liu
  • Wei-Hong Guo
  • Ren-Bin Zhou
چکیده

The protein structural entries grew far slower than the sequence entries. This is partly due to the bottleneck in obtaining diffraction quality protein crystals for structural determination using X-ray crystallography. The first step to achieve protein crystallization is to find out suitable chemical reagents. However, it is not an easy task. Exhausting trial and error tests of numerous combinations of different reagents mixed with the protein solution are usually necessary to screen out the pursuing crystallization conditions. Therefore, any attempts to help find suitable reagents for protein crystallization are helpful. In this paper, an analysis of the relationship between the protein sequence similarity and the crystallization reagents according to the information from the existing databases is presented. We extracted information of reagents and sequences from the Biological Macromolecule Crystallization Database (BMCD) and the Protein Data Bank (PDB) database, classified the proteins into different clusters according to the sequence similarity, and statistically analyzed the relationship between the sequence similarity and the crystallization reagents. The results showed that there is a pronounced positive correlation between them. Therefore, according to the correlation, prediction of feasible chemical reagents that are suitable to be used in crystallization screens for a specific protein is possible.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of Crystallization Strategies Using the Biological Macromolecule Crystallization Database

The NIST/NASA/CARB Biological Macromolecule studies requires not only finding suitable chemical agents Crystallization Database (BMCD) contains crystal data that induce and sustain crystal growth but also that those and crystallization conditions for biological parameters such as protein concentration, ionic strength, macromolecules abstracted from the literature. Each temperature, pH, etc., be...

متن کامل

The Biological Macromolecule Crystallization Database and NASA Protein Crystal Growth Archive

The NIST/NASA/CARB Biological Macromolecule Crystallization Database (BMCD), NIST Standard Reference Database 21, contains crystal data and crystallization conditions for biological macromolecules. The database entries include data abstracted from published crystallographic reports. Each entry consists of information describing the biological macromolecule crystallized and crystal data and the ...

متن کامل

Tapping the Protein Data Bank for crystallization information.

A database application has been developed for the collection of crystallographic information. This database (the BDP) has been populated with the information found in the Protein Data Bank (PDB). The tool has been used to store crystallization data parsed out of the PDB and these data may be used to extend the crystallization information found in the Biological Macromolecule Crystallization Dat...

متن کامل

Statistical methods for the objective design of screening procedures for macromolecular crystallization.

The crystallization of a new macromolecule is still very much a trial-and-error process. As is well known, it requires the search of a large parameter space of experimental settings to find the relatively few idiosyncratic conditions that lead to diffraction-quality crystals. Crystallographers have developed a variety of screens to help identify initial crystallization conditions, including tho...

متن کامل

Correction: Comparing Chemistry to Outcome: The Development of a Chemical Distance Metric, Coupled with Clustering and Hierarchal Visualization Applied to Macromolecular Crystallography

Many bioscience fields employ high-throughput methods to screen multiple biochemical conditions. The analysis of these becomes tedious without a degree of automation. Crystallization, a rate limiting step in biological X-ray crystallography, is one of these fields. Screening of multiple potential crystallization conditions (cocktails) is the most effective method of probing a proteins phase dia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2012